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1. ABSTRACT

Consider a multichannel sampling system consisting of many
acquisition devices observing an input finite rate of inno-
vation (FRI) signal, a non-bandlimited signal that has finite
number of parameters [1, 2]. Each acquisition device has
access to a delayed version of the input signal where the
delays are unknown. By synchronizing the different chan-
nels exactly we are able to reduce the number of samples
needed from each channel resulting in a more efficient sam-
pling system. Figure 1 shows the described multichannel
sampling system where the bank of acquisition devices
ϕ1(x, y), ϕ2(x, y), . . . , ϕN−1(x, y) receive different ver-
sions of the input FRI signal g0(x, y). Here, the delays
(1-D) or geometric transformations (2-D) are denoted by
T1, T2, . . . , TN−1.

Fig. 1. Multichannel sampling setup

In [4] Baboulaz considered the use of exponential splines
(E-splines) [3] for sampling a stream of 1-D Dirac impulses
in a multichannel sampling setup described in Figure 1. An
advantage of E-spline sampling kernels is that they can be
employed in a fully symmetric multichannel sampling envi-
ronment. By symmetric sampling, we mean that the sampling
process can be evenly distributed between different acquisi-
tion devices. It was shown that if two 1-D signals are just
shifted version of the other, then by setting one parameter
to be common between the exponents of the E-spline sam-
pling kernels for the two signals, one can not only estimate the
shifts between the two signals, but also can linearly relate the
exponential moments of the two signals (the reader can refer
to [4, 5] for a more detailed discussion). Because of the direct

relationship between the exponential moments of the two sig-
nals, we can achieve perfect reconstruction of the reference
signal with fewer exponential moments required. Since less
moments are required from each channel, a lower order E-
spline sampling kernel would be needed, which in turn less
samples from each signal are required to achieve perfect re-
construction. This is because, from [2] we know that a stream
of Dirac impulses is uniquely determined from the samples
if there are at most K Dirac impulses in an interval size of
2KLT where L is the support of the sampling kernel. Since
the support of the sampling kernels is reduced in the multi-
channel case, we can achieve the same performance with a
smaller sampling rate T . For the 2-D case, in [5] we illus-
trate that symmetric multichannel sampling of bilevel poly-
gons (a 2-D FRI signal) can be achieved with the geometric
transformation being a 2-D translation between the different
signals. For the case of more complicated transformations
such as scaling and rotation, we can not estimate the parame-
ters like the way it was done for the simple translation case
in [5] with exponential reproducing kernels. Also, even if
we assume that the transformation parameters are known and
given, we still can not use the sampling algorithm shown in
[5] for the multichannel framework. This is because intro-
ducing more complicated transforms such as rotation and/or
scaling for example, would result in a non-linear relationship
between the exponential moments of the different signals.

The first question we need to answer is that, assuming
an oracle gives us the values of the transformation parame-
ters, can we sample and perfectly reconstruct translated, ro-
tated and scaled bilevel polygons in a symmetric multichannel
framework? It is known that for an N-sided bilevel polygon,
with N+1 projections, perfect reconstruction of the polygon
can be achieved. That is points that have N+1 line intersec-
tions from the N+1 back-projections correspond to the N ver-
tices of the polygon. We also know that a Radon projection
at an angle φ of a rotated image with respect to its reference
image with an angle θ, is the same projection, but scaled and
translated, on the reference image at the angle φ + θ. There-
fore, if all the transformation parameters are known, and as-
suming that the rotation angle is not zero that is, θ 6= 0, then



the N + 1 projections needed could be separated between the
different channels, in order to sample and perfectly recon-
struct the reference image in a symmetric manner. The next
question would be, how can we estimate the transformation
parameters? We know that with the use of polynomial repro-
ducing kernels, we can obtain the geometric moments of a
signal, and geometric moments up to order 2 from two sig-
nals are enough to estimate translation, rotation and scaling
parameters between the two signals. We also know that, as E-
splines are a generalized version of B-splines [3], we can re-
produce a combination of polynomials and exponentials from
E-splines. From the polynomials moments up to order 2, we
can estimate all the transformation parameters.

2. RESULTS

As an example, in [5] we showed that to achieve perfect re-
construction for a 4-sided bilevel polygon, a 2-D E-spline
order of 12 is required to produce 5 projections at the an-
gles 0, 45, 90, tan−1(2) and tan−1( 1

2 ). With 2-D E-spline
order of 7 however we can produce 3 projections at the angles
0, 45, 90 on the reference signal, and a 2-D E-spline order of
7 on the second signal would give 3 projections for the ref-
erence signal at the angles θ, 45 + θ, 90 + θ where θ is the
rotation parameter. Assuming θ is not zero, we would have
enough projections to perfectly reconstruct the reference sig-
nal. Therefore an spline order of 7+2 = 9 (2 is needed for es-
timating the transformation parameters) on each signal would
give us enough projections to perfectly reconstruct the refer-
ence signal. An example for a 4-sided bilevel polygon with
two acquisition devices is shown in Figure 2 where the ref-
erence signal, its translated, rotated and scaled version, their
samples, the E-spline sampling kernel, and the reconstructed
reference signal are all shown.
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Fig. 2. Symmetric multichannel sampling of translated, rotated and
scaled bilevel polygons using E-spline sampling kernels. (a) The ref-
erence signal in a frame data size of 256× 256. (b) The translated
(4x = −100,4y = 150), rotated (θ = 35) and scaled (a = 1.1) ver-
sion of the reference signal. (c) & (d) The 16× 16 samples of both sig-
nals. (e) 2-D generalized E-spline of order 9 (f) The reconstructed ver-
tices of the reference signal with 6 back-projections, the crosses are the
actual vertices of the polygon. [Not to scale]


